
131 

Chemometrics and Intelligent Laboratory Systems, 4 (1988) 131-146 
Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands 

Originat Research Paper m 

A Bayesian Approach to Gross Error Detection 
in Chemical Process Data 

Part II *: Simulation Results 

AJIT C. TAMHANE * 

Department of industrial Engineering und Management Sciences, and Statistics, Northwestern University, 

Evanston, IL 60208 (U.S.A.) 

CORNELIU IORDACHE ** and RICHARD S.H. MAH 

Department of Chemical Engineering, Northwestern University, Evanston, 

(Received 15 June 1987; accepted 16 February 1988) 

ABSTRACT 
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Tamhane, A.C.. lordache, C. and Mah, R.S.H., 1988. A Bayesian approach to gross error detection in chemical process 

data. Part II: Simulation results. Chemometrux and Intelligent Laboratory Systems, 4: 131-146. 

The performance of the gross error detection scheme based on the Bayesian test is evaluated using Monte Carlo 

simulation methods. Effects of selected control factors (implementation options) and noise factors (e.g., violation of 

assumptions and misspecification of priors) are studied. A comparison is made with the gross error detection scheme 

based on the non-Bayesian measurement test of Mah and Tamhane. The Bayesian scheme is found to be relatively 

robust. It performs better than the measurement test scheme when gross error occurrences are not infrequent. However, 

its performance characteristics converge rather slowly and hence accurate prior estimates of the various unknown 

parameters are necessary before the method can be put to practical use. 

In conclusion, the Bayesian approach offers the promise of improving gross error detection and identification 

capabilities by using past failure data. Its technical feasibility is demonstrated by this investigation, but much remains 

to-be done to makeit a practical method. 

7 SUMMARY OF PART II 

In Part I we have given a theoretical develop- 
ment of the Bayesian scheme for detecting gross 
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errors in process data. In the present Part II we 
study selected performance characteristics of this 
scheme. Analytical evaluation of these perfor- 
mance characteristics is difficult if not impossible 

because of the complex nature of the detection 
scheme. Therefore simulation methods must be 
employed. Using the same methods, performance 
characteristics of the gross error detection scheme 
based on the measurement test of Mah and 
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Tamhane [l] are also evaluated and compared 
with those of the detection scheme based on the 
Bayes test. Recall that the measurement test does 
not make use of the prior information while the 
Bayes test does. Therefore the objective of the 

aforementioned comparison is to assess the extent 
to which the prior information on instrument 
failures makes a difference in gross error detection 

and identification. We also study, via sensitivity 
analysis, the robustness of the Bayesian scheme to 
misspecification of the prior information. Both 

Bayesian scheme and the measurement test scheme 
are expected to be robust to non-normality of 
individual data vectors because both are based on 
the averages of N such vectors in each measure- 

ment period and for large N (we used N = 30 in 
the present simulations), by the central limit theo- 

rem, the averaged data vectors should be ap- 
proximately normally distributed. For this reason 

we did not study robustness to non-normality in 
the present simulations. 

The following is an outline of Part II. Section 8 
gives a step-by-step description of the Bayesian 

gross error detection scheme as it is implemented 
in the simulation program. An analogous descrip- 
tion of the measurement test scheme is also given. 

Details of the simulation study are given in Sec- 
tion 9. The measures used to assess and compare 
the performances of the Bayesian and the mea- 
surement test schemes are defined in Section 10. 

Simulation results are presented and discussed in 
Section 11. Conclusions following from these re- 
sults and recommendations for the use of ap- 
propriate gross error detection scheme are given in 
Section 12. The same notation as in Part I is 
followed in this paper, and frequent references are 
made to the equations and discussion in Part I. 

8 GROSS ERROR DETECTION SCHEMES BASED ON 

THE BAYESIAN AND MEASUREMENT TESTS 

8.1 Gross error detection scheme based on the Bayes- 

ian test 

In this section we outline the steps involved in 
the implementation of the Bayesian gross error 
detection scheme. Explanations for the modifica- 
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tions of the basic scheme are given in Section 5 of 
Part I. 

Step 0. (i) Input the following information: For 
i=l,2 , . , n, initial estimates e(O) and g(O) of 6, 

and S,, the number of confirmed detections a,(O) 

= 0 and total detections b,(O) = 0, and the value 

of s, (cf. (4.11)). Compute the starting values of 
I”’ and mf”’ from t$‘“’ and s, using (4.12). In 

addition, input the following quantities: the de- 
sign matrix D, the constraint matrix B, the error 
covariance matrix Z, and the number of data 

vectors observed per measuring period, N. The 
covariance matrix Q of the averaged data vector 
for each period is then (l/N)Z. 

(ii) Initialize the ages 7,(O) of all instruments 
and compute the prior probabilities p,(O) and 

r,(O) using (4.5) and (4.6) respectively. Also ini- 
tialize sets Z,(O) and Z,(O) of flagged * and un- 
flagged instruments, respectively **. 

Step t (t = 1, 2,. . . ). (i) The following quantities 
are available from the previous step, i.e., the (1 - 

1)th step (how these quantities are computed for 
period t is explained in subsequent steps of the 
algorithm): 
Z,(t- 1) = 
Zr(t-1) = 

7,(t - 1) = 

JJ,(t-1) = 

Set of flagged instruments, 
Set of unflagged instruments, 
Age of instrument i, 

Individual prior probabili- 
*** ties , 

Group prior probabilities, 
No. of confirmed occurrences 
of gross errors in instrument i, 

No. of detections (confirmed 
or not) of gross errors in in- 
strument i, 

r,(t-1) = 
a,(t-1) = 

b,(t-1) = 

* A flagged instrument is one in which a gross error has been 

detected but not confirmed because it has not been inspected 

since the last detection. An unflagged instrument is one in 

which no gross error has been detected since the last inspec- 
tion. 

l * In our simulation program we used r,(O) = 0 for all i 

which makes p,(O) = 0 for all i and therefore n,(O) = 0 for all 

nonempty groups I. Hence no gross error detection test needs 

to be applied at f = 1. We also set I,(O) = 0, the empty set, and 

I,(O) = (1,2 ,_.., n}, the whole set. 
l ** From (8.8) we see that p,(t -1) = 0 Vi E Z,(t - 1) so that 

no gross errors will be detected in flagged instruments. 
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I!“‘, m(a), /_p) 
I I , = Parameters of the beta distri- 

bution associated with instru- 

ment i after a = a,(t - 1) con- 
firmed gross error occurrences, 

S^W) 
I = Estimate of 6; after b = b,( t - 

1) detections (confirmed or 

not). 

(ii) Record N data vectors for period t and 
compute their average y(t). 

(iii) Compute the posterior probabilities 7?(, ) (t ) 
for configurations in which a gross error is present 
in only one of the instruments i E Zz(t - 1). For 

calculating ii{;)(t), use formula (4.3) with the cor- 

responding a,, ) vector having the following com- 

ponents: 

j th component of 6,, j 

= 

I 

tTch) 

d 

for j=ior jEZi(t-1) 

for j#i, jEZZ(t-1) 
(8.1) 

where b = b,( t - 1). 
(iv) Choose the top quartile of the instruments 

in I2 (t - 1) based on their ii{, ) (t ) values. Call this 

subset of Z2(l - 1) as Z(t). 
(v) Find set Z * = Z*(t) c I(t) using decision 

rule (3.7). In the search for the maximizing subset 
Z*(t), restrict to subsets of Z(t) of cardinality 

s 3. 
(vi) If an instrument is included in set Z* in 2 

out of 3 consecutive time periods, then include it 
in the subset of instruments in which gross errors 

have been detected but not confirmed yet. Sym- 
bolically, 

Z,(t)=Z,(t-l)uZ**(t) (8.2) 

where 

z**(t)=z*(t)n[z*(t-l)uz*(t-2)] 

(8.3) 

Let 

z*(t) = (1, 2 )..., rl} -z,(t) (8.4) 

(vii) Set 

b, (t> = 
b,(t- 1) + I 

b,(t-1) 

ViEZ**(t) 

ViEZ**(t) 
(8.5) 

(viii) Estimate 6, for each i E Z * *(t) using the Since the measurement test does not make use 
procedure given in Section 5.1. Let di(t) denote of any prior information, there is no need in this 

this estimated value. (Note that this procedure 
yields estimates 8;(t) for all i E II(t), but we only 
use the estimates obtained for the newly detected 

gross errors, i.e., for i E Z**(t).) Compute 

weighted estimates for i E Z * *(t ): 

8(b) = 
I & { b,(t) + b&hp’)} (8.6) 

where b = b,(t). Note that the estimates 8,‘“’ re- 
main unchanged for i @ Z * *(t). 

(ix) If t is not a scheduled inspection time, then 
let a,(t) = a,(t - 1) for all i, 

~,(t)=min(~,(f-l)+l, l/t’“‘) for iEZ2(t) 

(8.7) 

where f!(‘) = fja)/( I,‘“’ + mlO’) and a = u,(t). Let 

p,(1) =b ViEZl(t) (8.8) 

and compute p;(t) for i E Z2(t) using formula 

(4.7). Let t + t + 1 and return to the beginning of 
step t. 

(x) If t is a scheduled inspection time, then 
check all instruments i E Z,(t). Take appropriate 
corrective actions on instruments that are found to 
contain gross errors. For these instruments set 
am = 0, u,(t) = u,(l- 1) + 1, and update their I, 
and m, values using the formula (cf. (4.9)): 

Z,cO) = Z!“_” + 1, 

mj”) = mja-i) + (Z,‘“) + d!“)) - 1 (8.9) 

Here a = a,(t), t,‘“’ is the actual age of the ith 
instrument at which its presently corrected gross 

error occurred and d,‘“’ is the delay in detecting 
that gross error. 

(xi) For all other instruments set u;(t) = u,(t - 

1). For instruments i E Z,(t) that are checked but 
found to be not in error, set I, = APC (age 
post-checking), which is a small fixed number 
provided as input to the program. 

(xii) Reset Z,(t) =I$ and Z,(t) = (1, 2 ,..., n}. 
Let t + t + 1 and return to the beginning of step t. 

8.2 Gross error detection scheme bused on the meu- 
surement test 
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scheme to keep track of such quantities as instru- 
ment ages and estimates of the 8,‘s and 6,‘s. Other 
aspects of the scheme, e.g., the deferred decision 

rule (2/3 rule), checking of the instruments only 
at scheduled inspection times, restriction to at 

most 3 undetected gross errors at any time, etc. 
are the same as before. The following are the steps 

in this scheme. 

Step 0. Input the quantities D, B, Z, N and 
Q = (l/N)Z. Also fix a level of significance (Y. 
Let /I = i { 1 - (1 - ,)“‘n } and let zp be the upper 
/I point of the standard normal distribution. Let 

I,(O)=# and I,(O)= (1, 2 ,..., nf_ 
Step t (t= 1, 2,...).(i) Let 1,(r- 1) and Iz(r- 

1) be as defined for the Bayesian scheme. 
(ii) Record N data vectors for the time period t, 

and calculate the averaged data vector y(t). 
(iii) Compute the vector of transformed residu- 

als 

d(t) = Q-‘r(t) = Q-‘(I - DM)y(t) (8.10) 

where M is defined in (A.3). Next calculate the 

standardized residuals * 

il(i)=P for ifZ,(t--1) (8.11) 
ii 

where w,, is the i th diagonal element of matrix W 
given by (A.14), which can be shown to be equal 
to the covariance matrix of d(t). 

(iv) Pick the three largest (in absolute value) 
z~(~)-statistics, i E &(t - 1). If any of these three 

statistics satisfy the condition 

I+(t) I ‘Zp (8.12) 

then a gross error is suspected in the corre- 
sponding instrument and it is included in set 

r*(t). 

* As noted in ref. 1, the test statistics (8.11) for detecting gross 

errors are based on transformed residuals because they have 

certain optimal power properties shown in ref. 2. If Q is 

diagonal, then there is no need to use transformed residuals. In 

that case, instead of (8.1 l), we simply use 

where u,( is the ith diagonal entry of matrix V defined in 

(A.6). 

(v) Let I**(t) be as defined in (8.3) and let 
I,(f) be as defined in (8.2). 

(vi) If f is not a scheduled inspection time, then 
let t + t + 1 and return to the beginning of step t. 

(vii) If t is a scheduled inspection time, then 

check all instruments i E Z,(t). Take appropriate 
corrective actions on instruments that are found to 

contain gross errors. Reset r,(t) = + and 1*(t) = 

(I, 2,..., n}. Let t - t + 1 and return to the be- 

ginning of step t. 
We remark that in step (iv) above an alternative 

test for multiple gross errors described in Cook 

and Weisberg (ref. 3, pp. 28-31) could have been 
employed. However, that test involves many more 

computations (computations of statistics for all 
subsets of cardinality 5 3) and it is not clear that 
it is significantly more powerful. 

9 DETAILS OF THE SIMULATION STUDY 

In this section we give details of the simulation 
study conducted to assess the performance of the 

gross error detection scheme based on the Bayes- 
ian test relative to that based on the measurement 
test. The simulation program follows closely the 
algorithms for the two schemes described in the 

Fig. 1. Network 1 
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Fig. 2. Network 2. 

previous section. Selected performance measures 
(defined in Section 10) are evaluated periodically 
in the program. 

Simulation runs were performed for five differ- 
ent networks (shown in Figs. l-5), which differ in 
size and structure. For the first four networks the 

Fig. 3. Network 3. 
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Fig. 4. Network 4 (steam system for a methanol synthesis unit, by Serth and Heenan [3]). 

constraints are total mass flow balance con- 
straints, so B is the incidence matrix of the corre- 
sponding digraph in each case. Network 1 shown 
in Fig. 1 with 4 nodes and 8 streams is the 

smallest in size. Networks 2 and 3 shown in Figs. 
2 and 3, respectively, have the same number of 
streams but different structures (different numbers 
of nodes). Network 4 in Fig. 4 is the largest (11 

nodes and 28 streams). It represents the steam-me- 
tering system that was used by Serth and Heenan 
[4] to test their gross error detection algorithm. 
Networks l-3 do not have a direct physical inter- 
pretation. Network 5 shown in Fig. 5 is for the 
ammonia synthesis loop studied by Crowe et al. 
[S]. The B matrix for this network is not simply 
the incidence matrix. It is the matrix denoted by C 
in Tamhane and Mah (ref. 6, p. 419) with b, the 
unknown fraction of N,, H, and Ar purged in the 

splitter, estimated to be 0.02. This matrix is given 
in Table 7. For details of calculation of this ma- 

trix, see ref. 6. 
For each network we performed a number of 

runs under different conditions, e.g., different prior 
estimates of the 0,‘s and 6,‘s different implemen- 
tation options (e.g., the 3/5 deferred decision rule 
versus the 2/3 rule mentioned in the descriptions 
of the schemes, different schedules of inspection 
times), different values of the true 6,‘s and Q, etc. 
Each simulation run consists of NR replications of 
the realization of the process over N7 time peri- 
ods. All the operations carried out during each 
time period including generation of gross errors, 
generation of the averaged data vector, applica- 
tion of the Bayes test for detection of gross errors, 
etc. are together referred to as a simulation. Thus 
each simulation run consists of NR times N, simu- 



137 Original Research Paper n 

Separator 
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Fig. 5. Network 5 (ammonia synthesis loop). Measured flow rates: y = (Nil), Hi’), Arc”, Ni2), Arc2), Ni3), NHi4’, His)), 

lations. A 
tion run is 

1 

2 

Replication 

schematic representation of a simula- 
shown below. 

L_..l. 
0 1 2 Time Period + N, 

I I 

0 1 2 NT 

NRl I 

0 1 2 NT 

We assume that N measurements of the data 
vector are made in each time period. Notice that 
only the average of these N individual measure- 

ments needs to be generated for each period. For 
time period t, this average, y(t), has an n-variate 
normal distribution with mean vector Dx + 8 5 
q(” - 1) and covariance matrix Q = (l/N)Z. 
Without loss of generality x is taken to be a null 
vector. The vector q(t - 1) is obtained by gener- 
ating Bernoulli random variables q,( t - 1) for all 
instruments i in which gross errors are not already 
present at time t- 1. Here n,(t- l)= 1 with 
probability 8, (T (1 - 1)) and = 0 with probability 
1 - di(T,(t - 1)) where /3,(7;(t - 1)) is obtained 
from (5.6) and Tj(t - 1) is the actual age of instru- 

ment i at time t - 1 (i = 1, 2,. . , n, t = 1, 2,. . .). 
The values of f?,(l) and j3, used in (5.6) are inputs 
to the simulation program; the program keeps 

track of the actual ages of all the instruments. 
Recall that j.3, = 0 corresponds to the constant 
failure rate model, e,(q) = 0, for all 7; 2 1 (i = 
1,2 )..,) n). 

As noted before, the output from each simula- 
tion run consists of averaged values of the various 
performance measures. Certain simulation runs 
were carried out especially for studying the con- 

vergence behavior of the Bayesian scheme. For 
these runs, the performance measures were 
evaluated on a cumulative basis at selected mea- 
surement periods NM in each realization. The 
reported values are averages of these performance 
measures over NR realizations. Although the pro- 
gram computed performance measures for each 
stream separately, to save space we only report, 
for networks 1-4, their averages over all the 
streams; only for network 5 have we reported 
performance measures for each stream separately 
in Table 7. The reasons for doing this will become 
clear in the discussion of Table 7 given in Section 



l Chemometrics and Intelligent Laboratory Systems 138 

11. In addition to the performance measures, the 
program also reports the final estimates of the 8,‘s 
and the 6,‘s (averaged over NR realizations). 

All runs were made using NR = 50 and N = 30. 
For most runs we used N,= 10080 except those 
runs that were conducted to study the convergence 
properties of the Bayesian scheme, which used 
NT = 50400. For these latter runs, performance 

measures were computed periodically for N, = 
1008, 5040, 10080, 30240 and 50400. Assuming 

that each measurement period is 10 minutes long 
(i.e., the data vectors are recorded once every 20 
seconds), we see that 48 periods correspond to one 
shift of 8 hours, 144 periods correspond to one 
day, 1008 periods correspond to one week, 10080 
periods correspond to ten weeks, and 50400 peri- 

ods correspond to 50 weeks or nearly a year. 
Simulations were performed on Northwestern 

University’s CDC Cyber 180/845 computer and 

on the University of Illinois’s Cray X-MP/48 
supercomputer. The supercomputer was used to 
perform runs with N,= 50400 (runs for studying 
the convergence properties of the Bayesian scheme) 
and runs for network 4, which is the largest net- 

work studied; these runs would not have been 
feasible without access to a supercomputer. For- 
tran 77 was the language used in both the pro- 
grams. The multiplicative congruential pseudo- 

random number generator of Downham and Ro- 
berts [7] was used to generate uniform [0, l] ran- 
dom variates on the Cyber while the library func- 
tion RANF was used on the Cray. The uniform 
random variates were transformed into standard 

normal variates using the polar method (see ref. 8, 
p. 105). The covariance matrix Q = (l/N)Z was 
assumed to be diagonal (with diagonal entries * 
equal to a,‘/N) in all of the simulation runs. Thus 
independently distributed measurements y,(t) for 
i=l,2 ,..., n were obtained by scaling the stan- 

dard normal variates by 0,/m and adding the 
6,‘s to those measurements in which gross errors 
have been generated but not removed yet (recall 
that we have taken s = 0 without loss of gener- 

* Note that here we have denoted the diagonal entries of 2 by 
7 

the 6; instead of the o,,, which is thus an exception to the 
notational convention followed elsewhere in this paper. 

ality). Generation of gross errors at time t - 1 for 
those measurements in which gross errors were 
not already present was determined by simulation 
of Bernoulli random variates v,(t - 1). The latter 

were generated from uniform [0, I] variates by the 
usual method. 

10 PERFORMANCE MEASURES 

For a given replication of a simulation run 
consisting of N, time periods we used the follow- 
ing quantities as measures of performance of a 
gross error detection scheme. Note that these 
quantities are sample estimates of the corre- 
sponding population parameters. Further note that 
the values reported in the Results and Discussion 
section of this paper for these performance mea- 

sures are averages over NR = 50 replications. Also, 

as noted before, some of the performance mea- 
sures are evaluated periodically during each repli- 
cation rather than only at the end of each repli- 
cation. 

(i) Overa&/ provability of a type I error 

This is estimated by 

PTI =i 1 - !ff 
0 

(10.1) 

where N, is the number of simulations in which 
no gross error is present in any of the instruments, 
and NW is the number of those N, simulations 

where no type I error is made. 

(ii) Expected number of type I emm 

This is estimated by 

ETI = Total number of type I errors 

NT 
(10.2) 

Note that in Table 7 for network 5 this ETi is 
referred to as the overall ET1 which is the sum of 

the ET1 values for all the streams. 

(iii) Overall expected delay in detection 

Let djJ’ be the delay in detecting the jth 
generated gross error in the ith instrument. Then 
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the expected delay for that instrument is estimated 

bY 

; d,fJ) 

EDL,=+ 

R’ 
(10.3) 

our estimate of the overall power. The corre- 
sponding proportion for each instrument was used 
to estimate the instrument specific power. We 
have not reported these power estimates here be- 
cause essentially the same information concerning 
the sensitivity of the scheme in detecting gross 
errors is more directly obtained from EDL. 

where NR, = number of gross errors generated in 
instrument i (i = 1, 2,. . . , n). The overall expected 

delay is estimated by 11 RESULTS AND DISCUSSION 

(10.4) 

(iv] Estimates of the 8, and 8, 

For the Bayesian scheme it is of interest to 
know how large a and b (the number of con- 
firmed gross errors and the number of detected 

gross errors in instrument i) must be so that the 
estimates 4’“’ and 8,(bt will converge to the corre- 

sponding true values @, (assuming constant failure 
rate) and S,. For the increasing failure rate model 
(5.4), 8,(“’ should converge to 

The simulation results are presented in Tables 
l-7. The first five tables are for the Bayesian 
scheme applied to network 1; the results are given 
for different runs corresponding to different im- 

plementation options and other conditions. The 

objective of these runs was to make a comprehen- 

sive study of the performance of the Bayesian 
scheme for the simplest network. Table 6 gives 

comparative results for the Bayesian and the mea- 
surement test schemes for the first four networks. 
Finally Table 7 gives similar comparative results 
for the ammonia synthesis loop (network 5). 

Each simulation run for the Bayesian scheme is 

labelled by B and that for the measurement test 
scheme by M. Each label is followed by a number 
indicating the network, followed by another num- 
ber indicating the particular run. 

&It = {expected lifetime of instrument i } -I 

= : d,(t) 
i 1 

-1 (10.5) 
(i=l, 2 ,...,n) 

i=l 

Of course, the rapidity with which these estimates 
converge to the true values will depend on, among 
other things, how close the initial estimates 8:‘) 
and 8,‘“’ are to the true values. We have reported 
the estimates 4 and 8{ (averaged over NR = 50 
replications) at the end of N, time periods, and in 
some cases at selected intermediate time periods. 

All of the runs used D = I and diagonal Q = 

(l/N)2 with diagonal entries uf/N = var( y, ( t )), 
i= l,..., n, t=1,2 ,.,. . All of the runs were per- 

formed for equal values of the parameters ot2, 8, 

(or 8,(l) and /3, for the increasing failure rate 
model (5.4)) a,, s,, and equal values of the initial 
estimates &“’ and 8(O). Therefore we have dropped 

subscript i from these quantities for notationa 
convenience. Also note that the final estimates 8; 

and 8, (averaged over NR realizations) are further 
averaged over i = 1, 2,. . . , n (except for network 
5) and reported as 6 and 8. 

In addition to the above performance measures Table 1 studies the performance of the Bayes- 
we also evaluated the overall powers of the Bayes- ian scheme as a function of the following imple- 
ian and the measurement test schemes for detect- mentation options (which are under a process 
ing gross errors. Since any generated gross error is engineer’s control): deferred decision rule, de- 
eventually detected and since the 2/3 deferred ferred checking of flagged instruments, the value 
decision rule was adopted in our work, we used of APC (age post-checking), and the value of ADJ 
the proportion of all gross errors that were de- (adjustment for delays in detection). The following 
tected within 3 time periods of their generation as observations may be made on this table. 



l Chemometrics and Intelligent Laboratory Systems 140 

TABLE 1 

Performance of the Bayesian scheme for different implementation options (N, = 10080) 

e(l) = 0.0001, p = 7.7 x 10-5, e = 0.007, 8 *(O) = 0.007, 0 = 0.2857, s = 1.2, 6 = 1.0, &‘) = 0.85. 

Run Deferred 

decision 

rule 

Inspection 

frequency * 

B1.l l/l 
B1.2 2;3 

H1.3 3/5 

81.4 2/3 

81.5 2/3 

B1.6 2/3 

B1.7 2/3 

81.8 213 

B1.9 213 

Immed. 

Immed. 

Immed. 

Shift 

Day 
Shift 

Shift 

Shift 

Shift 

* Shift = 48 periods, Day = 144 periods. 

** APC is set equal to the actual age. 

APC ADJ Simulation results 

4 8 PTI ET1 EDL 

7 3 0.0071 0.9970 0.1974 0.2285 1.624 

7 3 0.007i 0.9250 0.0662 0.0740 2.985 

7 5 0.0069 0.9700 0.0332 0.0385 4.468 

7 5 0.0060 0.8700 0.0502 0.0580 4.932 

7 5 0.0047 0.8600 0.0321 0.0232 11.592 
0 5 0.0061 0.8828 0.0458 0.0553 5.394 

l * 5 0.0062 0.7113 0.1374 0.0956 3.567 

7 3 0.0061 0.8650 0.0496 0.0576 4.933 

7 10 0.0063 0.8607 0.0518 0.0588 4.872 

(i) From runs Bl.l-B1.3 we see that a deferred 
decision rule reduces the incidence of type I errors 

but increases the detection delay. The 2/3 rule 
was thought to give a reasonable trade-off be- 
tween these two performance measures, and hence 
was used in all of the later work. There is no 
significant effect of different deferred decision 
rules on the final estimates 6 and s”. 

(ii) Runs B1.2, B1.4 and B1.5 differ only in the 
frequency of inspection of flagged instruments. 
We see that long postponements in inspection 
reduce PTI and ET1 but only at the expense of a 
substantial increase in EDL. Also delays in in- 
spection have deleterious effects on f? in particu- 
lar, and also on 6, because these estimates do not 
converge to the true values B and 6; in other 
words, there is an asymptotic bias. For example, 
for the 2/3 deferred decision rule with immediate 
inspection, s” = 0.0071 and 8 = 0.9250, which are 
quite close to the true values, while with daily 
inspection, r?= 0.0047 and s^ = 0.8600, which are 
well below the true values. Considering that im- 
mediate (or very frequent) checking is generally 
infeasible and type II errors (longer EDL’s) are 
generally costlier than type I errors, we adopted 
the once a shift (once every 48 periods) inspection 
schedule in subsequent simulation runs. 

(iii) The effect of APC is studied in runs B1.4, 
B1.6 and B1.7. In run B1.6 the age of a wrongly 

flagged instrument is set equal to zero (as per 
theory) after it is inspected while in run B1.7 it is 
set equal to its actual age; run B1.4 is for an 
intermediate value of 7, which is approximately 
5% of the expected lifetime (l/8). Higher APC is 

associated with higher PTI and ET1 but lower 
EDL. The intermediate value of roughly 5% to 
10% of the expected lifetime is used in most 

simulation runs. 
(iv) Runs B1.4, B1.8 and B1.9 use ADJ = 5, 3 

and 10, respectively, with everything else the same. 
We see that the simulation results for the three 
runs are not significantly different from each other. 
In subsequent runs ADJ = 5 was adopted. 

Table 2 studies the robustness of the Bayesian 
scheme to the violations of certain assumptions 
made and to the r&specification of the prior 
information (these violations and misspecifica- 
tions being not under a process engineer’s control). 
Robustness to non-normality was not studied for 

the reason mentioned in Section 7. We note the 
following conclusions. 

(i) Run B1.4 in Table 1 and run B1.10 in Table 
2 differ only in terms of the failure model used to 
generate gross errors; the former uses the increas- 
ing failure rate model (5.4) while the latter uses 
the constant failure rate model with 8 = the aver- 
age 8 for the former. Surprisingly we notice that 
the results for the two runs are very similar on all 
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Sensitivity analysis of the Bayesian scheme (Nr = 10080) 

B(l) = 0.0001. p = 7.7 x 10-s, @ = 0.007, 6 = 1.0, D = 0.2857, APC = 7, ADJ = 5, Inspection frequency: once a shift. 

Decision rule: 2/3. 

Run $0’ s ,-co, Simulation results 

0 8 PTI ET1 EDL 

B1.10 * 0.007 1.20 0.85 0.0062 0.8797 0.0525 0.0576 5.805 

81.11 0.0023 1.01 0.85 0.0030 0.9973 0.0139 0.0350 6.625 

B1.12 0.0023 1.20 0.85 0.0054 0.9127 0.0337 0.0481 5.619 

Bl.13 0.0023 1.80 0.85 0.0059 0.8844 0.0428 0.0539 5.134 

El.14 0.021 1.01 0.85 0.0110 0.7584 0.1052 0.0865 3.849 

81.15 0.021 1.20 0.85 0.0065 0.8419 0.0605 0.0630 4.736 
81.16 0.021 1.80 0.85 0.0062 0.8618 0.0511 0.0585 4.892 
B1.17 0.007 1.20 0.50 0.0062 0.8585 0.0514 0.0585 4.893 

B1.18 0.007 1.20 2.00 0.0061 0.8915 0.0443 0.0550 5.180 

* Run B1.10 used e(l) = 0.007 and fi = 0. i.e.. constant failure rate with 8 = $ = 0.007. 

performance measures recept EDL, which is actu- Bayesian scheme should perform better because it 
ally larger for the latter run. One would expect is based on that assumption, but this is not the 
that under the constant failure rate model the case at least in this particular run. 

TABLE 3 

Convergence study of the Bayesian scheme relative to prior estimate of 4 ( Nr = 50400) 

B(l) = 0.0001, p = 7.7 x 10-s, e = 0.007, 6 = 1.0, (s^(‘) = 0.85, 0 = 0.2857, APC = 7, ADJ = 5. Inspection frequency: cmce a shift. 

Decision rule: 2/3. 

Run &O’ s NM Simulation results 

CI 8^ rs PTI ET1 EDL 

B1.19 0.0023 1.20 1008 6 0.0034 0.941 0.0244 0.0410 6.563 
5040 29 0.0049 0.929 0.0296 

10080 59 0.0054 0.913 0.0337 
30240 I77 0.0058 0.895 0.0399 
50400 296 0.0059 0.889 0.0420 

0.0481 
0.0519 
0.0532 

5.800 
5.619 
5.363 
5.269 

B1.20 0.0023 1.80 1008 6 0.0050 0.900 0.0323 0.0477 5.679 
5040 29 0.0058 0.892 0.0402 0.0525 5.189 

10080 59 0.0059 0.884 0.0428 0.0539 5.134 
30240 178 0.0060 0.879 0.0455 0.0550 5.112 
50400 296 0.0060 0.877 0.0463 0.0558 5.092 

B1.21 0.021 1.20 1008 6 0.0097 0.809 0.0725 0.0714 4.387 
5040 30 0.0069 0.831 0.0662 0.0660 4.599 

10080 59 0.0065 0.842 0.0605 0.0630 4.736 
30240 178 0.0062 0.858 0.0539 0.0597 4.910 
50400 297 0.0061 0.863 0.0523 0.0588 4.949 

B1.22 0.021 1.80 1008 6 0.0072 0.851 0.0505 0.0604 4.816 
5040 30 0.0063 0.859 0.0526 0.0585 4.820 

10080 59 0.0062 0.862 0.0511 0.0578 4.892 
30240 178 0.0061 0.868 0.0495 0.0575 4.974 
50400 297 0.0060 0.870 0.0492 0.0573 5.008 



n Chemometrics and Intelligent Laboratory Systems 142 

(ii) The prior information regarding 0 (or # in 

the case of increasing failure rates) as expressed 
via @‘O’ has a significant influence on the perfor- 

mance of the Bayesian scheme. This can be seen 
from runs Bl.ll-B1.16. In the first three of these 

runs I?‘) = t?/3 while in the latter three runs SC”) 
= 38. We see that initial underestimation of 8 

results in a lower incidence of type I errors but 
longer detection delays, and vice versa. Note also 
that these effects are moderated if less weight is 

placed on the prior information and more weight 
on the data by specifying a larger value of S. 
Therefore if there is uncertainty about the accu- 
racy of the initial estimate &“), then a larger value 

of s ( 2 1.5) is recommended. 
(v) Inaccuracy in the initial estimate g(O) of 6 

has a less significant effect. This is seen by com- 

paring the results for runs B1.17 and B1.18 with 
those for run B1.4, the corresponding values of 
SC*) being OS, 26 and 0.856, respectively. The 

results are very similar in all three cases with 
higher Ei”‘*‘/S values yielding smaller PTI and 
larger EDL values. 

Table 3 studies the convergence behavior of the 
Bayesian scheme over a long time horizon (NT = 
50400) as a function of 8”‘. 

(i) First we note that the final estimate 6 con- 
verges to a fixed value of about 0.0060 (Z true 
8 = 0.0070) for a wide range of &“) and s values. 

(In fact, from Table 1 we see that for the increas- 
ing failure rate model, @ converges to the true $ 
only under immediate inspection of flagged instru- 
ments. Also from run B1.10 in Table 2 we see that 

with deferred inspection, f? does not converge to 

the true e even for the constant failure rate model.) 
The speed of convergence of 4 depends on the 
value of .s. Both for eio) = G/3 or 38, & converges 

in about 60 failures for s = 1.8, while for s = 1.2, 
about 300 failures are required. Notice that it 
would take a very long time in practice to observe 
so many failures. 

(ii) A prior underestimate of 0 (s(O) = 8/3) 
results in low initial PTI and ET1 (resp., high 
EDL) values, which slowly increase (resp., de- 
crease) to their true values. Opposite behavior is 
observed for prior overestimation of ~9 (@O) = 38). 

It may be noted that the convergence of these 
performance measures is rather slow even for s = 
1.8, but there is not more than 5% difference 

between their values at about 60 failures and at 
about 300 failures. 

One may argue that it is unlikely that the 
process will remain in a steady state so long (1 
year in the present example). It should be noted, 
however, that the failures observed over disjoint 
steady states can be pooled and the application of 
the Bayesian scheme can be carried over from one 
steady state period to the next as long as the type 

TABLE 4 

Convergence study of the Bay&an scheme relative to prior estimate of 6 (N, = 50400) 

8(l) = 0.0001, p = 7.7 x lo- 5, s = 0.007, 6 = 1.0, s = 1.8, s (‘I = 0 007 , APC = 7, ADJ = 5, D = 0.2857. Inspection frequency: once a 

shift. Decision rule: 2/3. 

Run &O, 
NM Simulation resuits 

a e 8 PTI ET1 EDL 

B1.23 0.50 1008 6 0.0067 0.815 0.0523 0.0601 4.828 

5040 30 0.0063 0.852 0.0529 0.0592 4.818 

10080 59 0.0062 0.858 0.0514 0.0585 4.893 

30240 198 0.0061 0.867 0.0496 0.0579 4.990 

50400 297 0.~60 0.869 0.0493 0.0572 5.010 

B1.24 2.00 1008 6 0.0067 1.053 0.0235 0.0437 6.724 

5040 29 0.0062 0.912 0.0411 0.0536 5.287 

10080 59 0.0061 0.892 0.0443 0.0550 5.180 

30240 178 0.0061 0.882 0.0466 0.0561 5.105 

50400 296 0.0060 0.877 0.0472 0.0563 5.087 
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TABLE 5 

Performance comparison of the Bayesian scheme with the measurement test scheme: effect of different failure rates (Nr = 10080) 

D = 0.2857, s = 1.20, &“‘= e, ADJ = 5, 13 = 1.0, 6 (‘) = 0.85. Different values of @(I), j3 and APC are used for different runs. 

Inspection: immediate. Decision rule: 2/3. 

Run 

B1.25 

Ml.25 

B1.26 

Ml.26 

B 

0.00025 

0.00025 

0.001 

0.001 

d 

_ 

0.200 

_ 

0.260 

Simulation results 

PMG * PNG l * 

0.54 99.27 

0.29 99.31 

2.33 

3.36 

PTI 

0.0091 

0.0105 

97.02 0.0206 

97.34 0.0188 

ET1 EDL 

0.0093 3.713 
0.0116 3.540 

0.0218 3.758 
0.0228 3.404 

B1.2 0.007 _ 9.36 85.17 0.0662 0.0740 2.985 

Ml.2 0.007 0.360 15.08 84.08 0.0420 0.0742 3.599 

B1.27 0.021 _ 20.92 65.38 0.1291 0.1461 2.667 

Ml.27 0.021 0.325 50.32 48.05 0.0408 0.1489 6.478 

* PMG = Percentage of simulations with multiple gross errors. 

l * PNG = Percentage of simulations with no gross errors. 

of instrumentation used and the basic process do 

not change. 

run averages. Opposite behavior is noted for large 
&O,. 

Table 4 makes an analogous convergence study Tables 5 and 6 give a comparative study of the 

relative to the prior estimation of 6. We see that two schemes based on the Bayesian test and the 

convergence of s^ is unaffected by the initial esti- measurement test for gross error detection. Com- 

mate a(‘). For both J(O) = :S and J(O) = 26, the parisons were made under identical implementa- 

final value of 8 is about the same but less than the tion options (e.g., deferred decision, deferred in- 

true S = 1. Low s^‘O’ results in high (resp., low) spection, etc.). To make a fair comparison be- 

initial PTI and ET1 (resp., EDL) values which tween the powers (as measured via their EDL’s) of 

slowly decrease (resp., increase) to their true long the two schemes, the level of significance a: used 

TABLE 6 

Performance comparison of the Bayesian scheme with the measurement test scheme: effect of different process networks (N, = 10080) 

B(1) = 0.0001, p = 7.7 x lo- 5, @= 0.007, 13 = 1.0, &‘i = 0.85, i? ̂(O) = 0 007, . s = 1.2, APC = 7, ADJ = 5, v = 0.2857. Inspection: 

immediate. Decision rule: 2/3. 

Run a Simulation results 

B1.2 _ 

Ml.2 0.360 

B2.1 _ 

M2.1 0.650 

B3.1 _ 

M3.1 0.235 

B4.1 _ 

M4.1 0.250 

PMG * PNG ** PTI ET1 EDL 

9.36 85.17 0.0662 0.0740 2.985 
15.08 84.08 0.0420 0.0742 3.599 

13.33 76.35 0.1262 0.1322 2.462 
15.86 75.16 0.1033 0.1333 2.666 

28.74 62.16 0.1188 0.1351 4.828 

94.26 6.82 0.0106 0.1398 50.050 

42.16 41 .Ol 0.1766 0.2090 5.021 
99.50 0.66 0.0065 0.2078 72.449 

* PMG = Proportion of simulations with multiple gross errors 

** PNG = Proportion of simulations with no gross errors. 
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for the measurement test was adjusted so that the 
ET1 values for the two schemes were roughly 

equal. 
Table 5 compares the two schemes for increas- 

ing frequencies (increasing 8) of gross error occur- 

rences. The performance of the two schemes is 
very similar for low $ (low incidence of multiple 

gross errors and high incidence of no gross errors). 
But for high 8 the Bayesian scheme is much more 
powerful (has low EDL values), although it has 
higher PTI too. (The ET1 values for the two 
schemes are adjusted to be approximately equal.) 

Table 6 compares the two schemes for networks 
1-4. Here the average failure rate t? is kept the 

same throughout. In that case, the larger the net- 
work the higher the incidence of multiple gross 

errors. 

(i) First note that, as in Table 5, the Bayesian 
scheme dominates the measurement test scheme in 
terms of EDL when there is a greater likelihood of 

multiple gross errors being present. In fact, PMG 
and PNG (defined in footnotes to Table 6) can 

themselves be viewed as performance measures, 
and it may be noted that for the measurement test 

scheme multiple gross errors are present much 
more frequently (and very rarely are there no 
gross errors present) than is the case for the Bayes- 

ian scheme. Thus the poorer performance of the 
measurement test scheme in the presence of multi- 
ple gross errors has an adverse effect that builds 

upon itself. 
An explanation for the improved performance 

of the Bayesian scheme under higher frequencies 
of occurrences of gross errors is that the effect of 

TABLE 7 

Performance comparison of the Bayesian scheme with the measurement test scheme for network S (NH, synthesis loop) 

(N, = 10080) 

6(l) = 0.0001. p = 7.7 x 10-s. B=o.o07, 6 = 1.0. s ̂@’ = 0 85. &” = 0.007, s = 1.5. APC = 7. ADJ = 5, (T = 0.2857. Inspection 

frequency: once a shift. Decision rule: 2/3. 

Projected constraint matrix B 

000 1 

B= [ 1 0 0 -1 

0 -1 -0.5 0 

0 0.98 

010 0 0 0 
001 0 -0.02 0 0 0 1 

-1.5 -0.02 
0 0 

y=(N, . . . (1) Hi” Ar”’ N$z’. A@‘, Nj)‘, NHi+, @‘) 

Run a Stream Simulation results 

PTI ET1 

B5.1 1 0.00100 

2 0.00565 

3 0.00178 

4 0.00129 

5 0.00436 

6 0.00298 

7 0.00238 

8 0.00575 

Overall 0.0226 0.02518 

0.10 1 0.00119 

2 0.00575 

3 0.00020 

4 0.00347 

5 0.00258 

6 0.00357 

7 0.00456 

8 0.00665 

Overall 0.00130 0.02797 

M5.1 

EDL s^ f! 

2.38 1.060 0.0062 

8.00 1.180 0.0048 

2.05 0.930 0.0060 

34.57 11.660 0.0050 

49.97 20.080 0.0042 

104.55 11.110 0.0037 

4.30 1.200 0.0057 

49.01 21.700 0.0040 

25.21 8.620 0.0049 

3.02 

15.67 

2.45 

96.65 

90.39 

92.08 

6.85 

56.31 

33.71 
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m&specification of prior estimates of 8 and 6 are 

wiped out faster by the accumulating data on 
instrument failures. 

(ii) Networks 2 and 3 have the same number of 
streams but network 2 has 10 nodes while network 
3 only has 6. From the results of the runs for these 

two networks we see that the performance of each 
scheme is much worse for network 3 compared to 
that for network 2 (PMG and EDL are higher and 
PNG is lower). This illustrates the point first 

noted by Iordache et al. [9] that the power of a 
gross error detection test is adversely affected by 
too many interconnections in the network. A con- 

venient measure to characterize this property of a 
network is the average of the ‘degrees’ of the 
nodes in the network, where the degree of a node 
is defined as the total number of streams entering 
or leaving the node. 

Table 7 gives results for the ammonia synthesis 
loop shown in Fig. 5. The constraint matrix B for 

this example, obtained by premultiplying the 
original constraint matrix by a projection matrix 
(see ref. 6), contains two pairs of proportional 
columns, namely, for measurements 2 and 8, and 
for 3 and 5; measurements 4 and 6 also have 
nearly proportional columns. (Note that in this 
network the measurements correspond to compo- 
nent flow rates, and not total stream flow rates. 

This correspondence is given in Fig. 5 and Table 7 
via the y vector. Thus, e.g., measurement 1 corre- 
sponds to N, flow rate in stream 1, measurement 
5 corresponds to Ar flow rate in stream 2, etc.) 
The adverse effects of these linear dependencies in 
the columns of the B matrix are reflected in the 
extraordinarily long expected delays (low powers) 
in detecting gross errors in streams 4, 5, 6 and 8. 
The final estimates of the 6’s for these measure- 
ments are substantially upward biased. The 8 val- 
ues for the same measurements are substantially 
downward biased; for others they are somewhat 
less so. Even longer expected delays are obtained 
for the measurement test in most cases. See ref. 9 
for an explanation of why proportional columns 

result in low powers and hence long expected 
delays for the measurement test. To summarize, 
both the tests give their worst performances for 
this network (with the measurement tests’s perfor- 
mance being worse than that of the Bayesian test) 

because of the proportional columns in the trans- 
formed balance matrix. To improve the perfor- 
mance of any detection scheme it would be neces- 
sary to augment the original balance matrix with 
additional constraints based on additional 
stoichiometric information if any. 

In addition to the above we also made some 
runs using unequal parameter values u,, B,, 6;, etc. 
The results of these runs are reported by Iordache 

[lo], and they show that the Bayesian scheme 
offers better performance than the measurement 

test scheme under a variety of complex scenarios. 
However, highly unequal cr,‘s result in highly bi- 

ased estimates of the 6,‘s using the Bayesian 
scheme. 

12 CONCLUSIONS AND RECOMMENDATIONS 

We have made a detailed study of the Bayesian 
scheme in this two-part paper. Despite the limita- 

tions of the basic model, which are listed in Sec- 
tion 6, the following conclusions can be drawn 
from this study, and consequent recommendations 
can be made. 

(i) The Bayesian approach offers the promise of 
improving gross error detection and identification 
capabilities by using past failure data. Its techni- 
cal feasibility is demonstrated by this investiga- 
tion. However, much remains to be done to make 
it a practical method. In the mean time it may 
serve as a useful vehicle for accumulating poten- 
tially valuable data on the instrument failure rates. 

(ii) The Bayesian scheme is relatively robust 
against misspecification of the prior information 
(particularly initial estimates of the 6,‘s) and non- 
normality of the data. However, its convergence 
properties are not very satisfactory. Starting with 
an initial guess of 8, between 33% and 300% of the 
true value, a large number of observed failures 
(about 60 to 300) is needed before Bi converges. A 
somewhat smaller number is needed for the key 

performance criteria to converge within +5% of 
their steady state values. So accurate initial esti- 
mates of the 8,‘s are needed before the method 
can be put to practical use. If there is uncertainty 
about the prior estimate of Bi, then a greater 
weight should be placed on the current data by 
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choosing a larger value of s,, which improves the 
performance of the scheme to some extent. 

(iii) In general, the Bayesian scheme outper- 
forms the measurement test scheme in the follow- 
ing situations: high frequencies of gross errors 

(multiple gross errors), large spreads in the magni- 
tudes and frequencies of gross errors, and long 
delays in confirmation and repairs. 

(iv) If instrument failures are infrequent, then 
the nleasurement test scheme performs slightly 
better than the Bayesian scheme at least for incor- 
rect prior information. A suitable strategy in this 
case might be to initially apply the measurement 
test scheme until sufficient failures are observed to 

enable formation of accurate prior estimates of 

the 0,‘s and the 6,‘s. At that point the Bayesian 
scheme can take over. A point worth repeating in 
this context is that the failure data from disjoint 
steady state periods can be pooled. 

(v) The computational effort involved in the 

application of the Bayesian scheme is substantially 
greater than that involved in the application of the 
measurement test scheme. A comparison on the 
Gray machine shows a ratio of 4: 1 in the two 

computational times for network 4 (after imple- 
menting the computational shortcuts for the 
Bayesian scheme described in Section 5.4). This 
ratio will be larger for larger networks because the 
computations for the Bayesian scheme increase 
exponentially with n, while those for the measure- 

ment test scheme increase linearly with n. Further 
research is needed to alleviate this problem. 

To conclude, we note some areas for future 
research. In Section 6 of Part I we have noted a 
number of practical features that are not incorpo- 
rated in the present model. It would be desirable 

to analyze some real data to see which assump- 
tions in the present model are most seriously 
violated. Then an extensive simulation study 
should be conducted to examine the robustness of 

the Bayesian scheme to the violations of those 
assumptions. This would help us in identifying the 
most critical practical features that should be in- 
corporated in a future Bayesian model so that the 
resulting gross error detection scheme can then be 
applied in practice with reasonable confidence. 
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